Date Available

11-2-2012

Year of Publication

2012

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department/School/Program

Physics and Astronomy

First Advisor

Dr. Moshe Elitzur

Abstract

In the framework of active galactic nuclei (AGNs), a galaxy’s supermassive black hole is surrounded by a dusty torus whose clumpy configuration allows for either direct or obscured views toward the central engine. Viewing AGNs from different angles gives rise to a variety of AGN classifications; for example, the generic Type 1 AGN class requires the detection of optically broad emission lines, which arise from quickly moving material within the torus, whereas Type 2 AGNs lack these observations. While these viewing angles are not directly observable, synthetic torus models generated with CLUMPY provide a means to determine them along with other parameters that describe the nature and characteristics of the torus in general. Employing CLUMPY models with mid-infrared spectroscopic observations of a large sample of both Type 1 and Type 2 AGNs allows us to acquire a further understanding of the clumpy torus structure and its viewing angles.

Share

COinS