Date Available

7-29-2013

Year of Publication

2013

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Medicine

Department/School/Program

Molecular and Biomedical Pharmacology

First Advisor

Dr. Rina Plattner

Abstract

Metastasis is one of the main causes of death in cancer patients. Metastatic melanoma is a death sentence, as chemotherapeutic agents have a 5% success rate or do not extend survival beyond 10 months. The lack of effective chemotherapeutic agents for treating metastatic melanoma indicates a dire need to identify new drug targets and develop new therapies. Our lab has previously shown that the kinase activity of Abelson family of non-receptor tyrosine kinases (c-Abl and Arg) is elevated in invasive breast cancer cell lines as compared to non-invasive cell lines. Previous studies from our lab have shown that Abl kinases are convergent point of ErbB2 and Src Kinases in melanoma cells and Abl kinases promote invasion by an undefined mechanism. Although Abl kinases promote invasion, it is not known whether they are important for metastastic potential. For the first time, we report that Abl kinases promote melanoma cell proliferation, survival, matrigel-invasion and single-cell 3D invasion. To investigate the mechanism by which Abl kinases promote invasion, we found out that active c-Abl transcriptionally upregulates MMP-1, and using rescue approaches we show that c-Abl promotes invasion via a STAT3àMMP-1 pathway. In contrast, active Arg drives invasion in a STAT3-independent manner, and upregulates the expression of MMP-3 and MT1-MMP, in addition to MMP-1. We also found that Abl kinases promote invasion via lysosomal degradation of a metastasis suppressor, NM23-H1 by activating lysosomal cathepsins B and L, which directly cleave and degrade NM23-H1. Furthermore, c-Abl and Arg are activated in primary melanomas and cAbl/Arg activity is inversely correlated with NM23-H1 expression both in primary melanoma and human melanoma cells. We also demonstrate, for the first time that active Abl kinases promote metastasis in vivo, as inhibition of c-Abl/Arg with nilotinib, dramatically inhibits lung colonization/metastasis in a mouse model using two different melanoma cell lines. In summary, we identify Abl kinases as critical, novel, drug targets in metastatic melanoma, and our data indicate that nilotinib may be useful in preventing metastasis in a select group of patients, harboring active Abl kinases.

Share

COinS