Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Pharmacology and Nutritional Sciences

First Advisor

Dr. Bernhard Hennig


Exposure to environmental pollutants poses numerous risk factors for human health, including increasing incidence of cardiovascular disease and diabetes. Persistent organic pollutants, such as polychlorinated biphenyls (PCBs) have been strongly linked to the development of these chronic inflammatory diseases and the primary route of exposure is through consumption of contaminated food products. Thus, the gastrointestinal tract is susceptible to the greatest levels of these pollutants and is an important facet to study.

The first two hypotheses of this dissertation tested that exposure to PCBs disrupts gut microbiota directly (in vitro) and within a whole body system. PCB exposure disrupted microbial metabolism and production of metabolites (i.e. short chain fatty acids) in vitro. These disruptions in microbial populations were consistent in our mouse model of cardiometabolic disease, where we observed reductions in microbial diversity, an increase in the putative pro-inflammatory ratio of Firmicutes to Bacteroidetes, and reductions in beneficial microbial populations in exposed mice. Furthermore, observed greater inflammation was observed both within the intestines and peripherally in PCB exposed mice as well as disruptions in circulating markers associated with glucose homeostasis.

Nutritional interventions high in prebiotic dietary fiber such as inulin may be able to attenuate the toxic effects of pollutant exposure. To test the hypothesis that consumption of the prebiotic inulin can decrease PCB-induced disruption in gut microbial and metabolic homeostasis, LDLr-\- mice were fed a diet containing inulin and exposed to PCB 126. Mice fed an inulin-containing diet and exposed to PCBs exhibited improved glucose tolerance, lower hepatic inflammation and steatosis, and distinct differences in gut microbial populations. Overall, these data suggests that nutritional intervention, specifically prebiotic consumption, may reduce pollutant-induced disease risk.

Digital Object Identifier (DOI)

Funding Information

National Institute of Environmental Health Sciences at the National Institutes of Health [P42ES007380], NIH T32DK007778