Homocystinuria, caused by cystathionine β-synthase deficiency, is a rare inherited disorder involving metabolism of methionine. Impaired synthesis of cystathionine leads to accumulation of homocysteine that affects several organ systems leading to abnormalities in the skeletal, cardiovascular, ophthalmic and central nervous systems. We report a 14-month-old and a 7-year-old boy who presented with neurologic dysfunction and were found to have cerebral venous sinus thromboses on brain magnetic resonance imaging (MRI)/magnetic resonance venogram (MRV) and metabolic and hypercoagulable work-up were consistent with classic homocystinuria. The 14-month-old boy had normal newborn screening. The 7-year-old boy initially had an abnormal newborn screen for homocystinuria but second tier test that consisted of total homocysteine was normal, so his newborn screen was reported as normal. With the advent of expanded newborn screening many treatable metabolic disorders are detected before affected infants and children become symptomatic. Methionine is the primary target in newborn screening for homocystinuria and total homocysteine is a secondary target. Screening is usually performed after 24–48 h of life in most states in the US and some states perform a second screen as a policy on all tested newborns or based on when the initial newborn screen was performed. This is done in hopes of detecting infants who may have been missed on their first screen. In the United Kingdom, NBS using dried blood spot is performed at 5 to 8 days after birth. It is universally known that methionine is a poor target and newborn screening laboratories have used different cutoffs for a positive screen. Reducing the methionine cutoff increases the sensitivity but not necessarily the specificity of the test and increasing the cutoff will miss babies who may have HCU whose levels may not be high enough to be detected at their age of ascertainment. It is not clear whether adjusting methionine level to decrease the false negative rates combined with total homocysteine as a second-tier test can be used effectively and feasibly to detect newborns with HCU. Between December 2005 and December 2020, 827,083 newborns were screened in Kentucky by MS/MS. Kentucky NBS program uses the postanalytical tools offered by the Collaborative Laboratory Integrated Reports (CLIR) project which considers gestational age and birthweight. One case of classical homocystinuria was detected and two were missed on first and second tier tests respectively. The newborn that had confirmed classical homocystinuria was one of twenty-three newborns that were referred for second tier test because of elevated methionine (cutoff is >60 µmol/L) and/or Met/Phe ratio (cutoff is >1.0); all 23 dried blood spots had elevated total homocysteine. One of the subjects of this case report had a normal methionine on initial screen and the other had a normal second-tier total homocysteine level. The performance of methionine and total homocysteine as screening analytes for homocystinuria suggest that it may be time for newborn screening programs to consider adopting next generation sequencing (NGS) platforms as alternate modality of metabolic newborn screening. Because of cost considerations, newborn screening programs may not want to adopt NGS, but the downstream healthcare cost incurred due to missed cases and the associated morbidity of affected persons far exceed costs to newborn screen programs. Since NGS is becoming more widely available and inexpensive, it may be feasible to change testing algorithms to use Newborn Metabolic NGS as the primary mode of testing on dry blood specimens with confirmation with biochemical testing. Some commercial laboratories have Newborn Screening Metabolic gene panel that includes all metabolic disorders on the most comprehensive newborn screening panel in addition to many other conditions that are not on the panel. A more targeted NGS panel can be designed that may not cost much and eventually help avoid the pitfalls associated with delayed diagnosis and cost of screening.

Document Type


Publication Date


Notes/Citation Information

Published in International Journal of Neonatal Screening, v. 7, issue 3, 48.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)