Abstract
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics.
Document Type
Article
Publication Date
10-6-2015
Digital Object Identifier (DOI)
http://dx.doi.org/10.3389/fnins.2015.00317
Funding Information
This work was supported by NIH grants DA026487, DA06634, DARPA N66001-09-C-2080 to SD and NSF grant EEC-0310723 to TB.
Repository Citation
Opris, Ioan; Santos, Lucas M.; Gerhardt, Greg A.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; and Deadwyler, Sam A., "Distributed Encoding of Spatial and Object Categories in Primate Hippocampal Microcircuits" (2015). Neuroscience Faculty Publications. 40.
https://uknowledge.uky.edu/neurobio_facpub/40
Data Sheet 1
Notes/Citation Information
Published in Frontiers in Neuroscience, v. 9, article 317, p. 1-11.
© 2015 Opris, Santos, Gerhardt, Song, Berger, Hampson and Deadwyler.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.