Date Available
6-26-2013
Year of Publication
2013
Degree Name
Master of Science in Manufacturing Systems Engineering (MSMSE)
Document Type
Master's Thesis
College
Engineering
Department/School/Program
Manufacturing Systems Engineering
First Advisor
Dr. Fazleena Badurdeen
Second Advisor
Dr. Jeffrey Seay
Abstract
As competition for fossil fuels accelerates, alternative sources of chemicals, fuels, and energy production become more appealing to researchers and the layman. Among the candidates to fill this growing niche is lignocellulosic biomass. Many researchers have examined supply chain design and optimization for biofuel and bioenergy production throughout the years. However, these models often fail to capture the variability and uncertainty inherent to the biomass supply chain. Multiple factors with high degrees of stochasticity can have major impacts on the performance of a biorefinery: weather, biomass quality, feedstock availability, and market demand for products are just a few. To begin to address this issue, a discrete event simulation model has been developed to examine the economic performance of a region specific, multifeedstock biorefinery supply chain. Probability distributions developed for product demand and feedstock supply begin to address the random nature of the supply chain. Model development is discussed in the context of a multidisciplinary framework for biorefinery supply chain design. A case study, sensitivity analysis, and scenario analysis, are utilized to examine the capabilities of the model.
Recommended Citation
Amundson, Joseph S., "Modeling of Biorefinery Supply Chain Economic Performance with Discrete Event Simulation" (2013). Theses and Dissertations--Manufacturing Systems Engineering. 6.
https://uknowledge.uky.edu/ms_etds/6
Included in
Agricultural Economics Commons, Operations and Supply Chain Management Commons, Other Chemical Engineering Commons, Other Engineering Commons