Abstract

In recent years, autonomous solutions in the multidisciplinary field of mining engineering have been an extremely popular applied research topic. This is a result of the increasing demands of society on mineral resources along with the accelerating exploitation of the currently economically viable resources, which lead the mining sector to turn to deeper, more-difficult-to-mine orebodies. An appropriate data management system comprises a crucial aspect of the designing and the engineering of a system that involves autonomous or semiautonomous vehicles. The vast volume of data collected from onboard sensors, as well as from a potential IoT network dispersed around a smart mine, necessitates the development of a reliable data management strategy. Ideally, this strategy will allow for fast and asynchronous access to the data for real-time processing and decision-making purposes as well as for visualization through a corresponding human–machine interface. The proposed system has been developed for autonomous navigation of a coalmine shuttle car and has been implemented on a 1/6th scale shuttle car in a mock mine. It comprises three separate nodes, namely, a data collection node, a data management node, and a data processing and visualization node. This approach was dictated by the large amount of collected data and the need to ensure uninterrupted and fast data management and flow. The implementation of an SQL database server allows for asynchronous, real-time, and reliable data management, including data storage and retrieval. On the other hand, this approach introduces latencies between the data management node and the other two nodes. In general, these latencies include sensor latencies, network latencies, and processing latencies. However, the data processing and visualization module is able to retrieve and process the latest data and make a decision about the next optimal movement of the shuttle car prototype in less than 900 ms. This allows the prototype to navigate efficiently around the pillars without interruptions.

Document Type

Article

Publication Date

8-13-2021

Notes/Citation Information

Published in Automation, v. 2, issue 3.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)

https://doi.org/10.3390/automation2030010

Funding Information

This study was funded by the Alpha Foundation for the Improvement of Mine Safety and Health, Inc., Philadelphia, PA, USA (Alpha Foundation), grant number AFC 417-21.

Share

COinS