Date Available

8-15-2012

Year of Publication

2012

Document Type

Doctoral Dissertation

Degree Name

Doctor of Philosophy (PhD)

College

Medicine

Department/School/Program

Microbiology, Immunology, and Molecular Genetics

Advisor

Dr. Glenn Telling

Abstract

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are lethal and infectious neurodegenerative diseases of humans and animals. The misfolding of the normal, or cellular isoform of the prion protein (PrPC) into the abnormal disease-associated isoform of PrP (PrPSc) could change the properties of PrP, consequently, PrPSc has lethal infectivity to transmit diseases. The proteinaceous infectious particle consisting mainly of PrPSc is called prion. Transmissibility of prions is strongly influenced by multiple factors including PrP polymorphisms, species barriers (PrP sequence specificity) and prion strains (conformational specificity) by unknown mechanisms. Even though the ability of prions to cross a species barrier has been recognized, the precise mechanisms of interspecies prion transmission remain unclear.

This dissertation research was conducted in order to learn more about the molecular mechanisms of conversion, propagation and transmission of PrPSc; about determinants of genetic susceptibility to infection in prion diseases; and about understanding those mechanisms, which might govern the zoonotic potential of prion diseases.

First, we investigated the transmissibility risk of multiple strains of Chronic Wasting Disease, which is a cervid TSE, with humanized transgenic mice and showed that the transmission barriers between cervid and the humanized mice are high. Next, the structural factors underlying the species barrier of prion diseases were studied using cell culture systems by systematically introducing amino acid substitutions in the regions of PrP, where the most divergences of different PrP species are recognized. Thirdly, we investigated the effects of the genetic susceptibility to prions as well as conversion kinetics and properties of PrPSc using Tg mice expressing ovine PrP polymorphism (OvPrP) at codon 136 either alanine (A) or valine (V). The templating characteristics of OvPrPSc-V136 were dominant over OvPrPSc-A136 under co-expressions of OvPrPC-A136 and OvPrPC-V136. Finally, the function of PrP was studied in relation to the pathogenesis of Alzheimer’s disease.

These studies demonstrated that the conformational compatibility between PrPC and PrPSc contributed to the conversion kinetics and species barrier. We concluded that the conformational compatibility of PrPC to PrPSc is controlled not only by the PrP sequence specificity but also by the tertiary structure of PrPC.

Share

COinS