Date Available
7-26-2013
Year of Publication
2013
Document Type
Master's Thesis
Degree Name
Master of Science in Medical Sciences (MSMS)
College
Medicine
Department/School/Program
Anatomy and Neurobiology
Advisor
Paul E.A. Glaser
Co-Director of Graduate Studies
Greg A. Gerhardt
Abstract
Epileptogenesis is the complex process of the brain developing epileptic acitivity. Due to the role of glutamate and the hippocampus in synaptic plasticity a dysregulation in glutamate neurotransmission and hippocampal dysfunction are implicated in the process of epileptogenesis. However, the exact causal factors that promote epileptogenesis are unknown.
We study presynaptic proteins that regulate glutamate neurotransmission and their role in epileptogenesis. The presynaptic protein, tomosyn, is believed to be a negative regulator of glutamate neurotransmission; however, no one has studied the effects of this protein on glutamate transmission in vivo. Furthermore, evidence suggests that mice lacking tomosyn have a kindling phenotype. Thus, in vivo glutamate recordings in mice lacking tomosyn have the potential to elucidate the exact role of tomosyn in glutamate neurotransmission and its potential relationship to epileptogenesis.
Here we used biosensors to measure glutamate in the dentate gyrus (DG), CA3, and CA1 of the hippocampus in tomosyn wild-type (Tom+/+), heterozygous (Tom+/-), and knock out (Tom-/-) mice. We found that, in the DG, that glutamate release increases as tomosyn expression decreases across genotype. This suggests that tomosyn dysregulation in the DG leads to an increase in glutamate release, which may explain why these mice have an epileptogenic phenotype.
Recommended Citation
Batten, Seth R., "GLUTAMATE DYSREGULATION AND HIPPOCAMPAL DYSFUNCTION IN EPILEPTOGENESIS" (2013). Theses and Dissertations--Medical Sciences. 1.
https://uknowledge.uky.edu/medsci_etds/1