Abstract

The estimation of PV production has been widely investigated previously, where many empirical models have been proposed to account for wind and soiling effects for specific locations. However, the performance of these models varies among the investigated sites. Hence, it is vital to assess and evaluate the performance of these models and benchmark them against the common PV estimation model that accounts only for the ambient temperature. Therefore, this study aims to evaluate the accuracy and performance of four empirical wind models considering the soiling effect, and compare them to the standard model for a 103 MW PV plant in Jordan. Moreover, the study investigates the effect of cleaning frequency on the annual energy production and the plant’s levelized cost of electricity (LCOE). The results indicate almost identical performance for the adopted models when comparing the actual energy production with R2 and RMSE (root mean square error) ranges of 0.93–0.98 and 0.93–1.56 MWh for both sub-plants, with a slight superiority of the models that incorporate wind effect. Finally, it is recommended in this study to clean the PV panels every two weeks instead of every three months, which would increase annual energy production by 4%, and decrease the LCOE by 5% of the two PV sub-plants.

Document Type

Article

Publication Date

1-16-2022

Notes/Citation Information

Published in Sustainability, v. 14, issue 2, 982.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)

https://doi.org/10.3390/su14020982

Share

COinS