Abstract
Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, we present a study of mandibular reconstruction that uses a dry cadaver mandible to validate our geometric and biomechanical design and fabrication (i.e., 3D printing) of NiTi skeletal fixation hardware. Based on the reference-dried mandible, we have developed a Finite Element model to evaluate the performance of the proposed fixation. Our results show a closer-to-normal stress distribution and an enhanced contact pressure at the bone graft interface than would be in the case with Ti-6Al-4V off-the-shelf fixation hardware. The porous fixation plates used in this study were fabricated by selective laser melting.
Document Type
Article
Publication Date
12-19-2016
Digital Object Identifier (DOI)
https://doi.org/10.3390/bioengineering3040036
Funding Information
The authors would like to acknowledge the financial support of the ASM International through an SMST 2015 inaugural fellowship. The authors would also like to acknowledge the financial support of the Ohio Third Frontier Technology Validation and Startup Fund.
Repository Citation
Jahadakbar, Ahmadreza; Shayesteh Moghaddam, Narges; Amerinatanzi, Amirhesam; Dean, David; Karaca, Haluk E.; and Elahinia, Mohammad, "Finite Element Simulation and Additive Manufacturing of Stiffness-Matched NiTi Fixation Hardware for Mandibular Reconstruction Surgery" (2016). Mechanical Engineering Faculty Publications. 26.
https://uknowledge.uky.edu/me_facpub/26
Included in
Biomedical Engineering and Bioengineering Commons, Mechanical Engineering Commons, Plastic Surgery Commons
Notes/Citation Information
Published in Bioengineering, v. 3, issue 4, 36, p. 1-20.
© 2016 by the authors; licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).