Date Available

7-27-2017

Year of Publication

2017

Document Type

Master's Thesis

Degree Name

Master of Science in Mechanical Engineering (MSME)

College

Engineering

Department/School/Program

Mechanical Engineering

Advisor

Dr. Suzanne Weaver Smith

Abstract

Rotational falls, or somersault falls, have led to serious and fatal injuries during the cross-country phase of Eventing competitions. Research to improve the safety of the sport began in 2000 after five fatal injuries occurred in the 1999 Eventing season. These efforts led to safety devices such as air jackets, improved helmets, and frangible/deformable fences. The focus of this thesis is to develop a more complete understanding of the horse-fence interaction as the approach motion transitions to a rotational fall. To achieve this, a large distribution of inertial properties was compiled through the development of a cylinder-based inertia approximation and a citizen science effort to gather equine geometrical measurements through a survey distributed by the United States Eventing Association (USEA). Furthermore, fundamental kinematic properties of the horse and rider were gathered from the literature. These distributions were used to conduct a Monte Carlo analysis to examine if the approach conditions of the horse and rider would result in a transition to a rotational fall upon horse-fence contact. Through the analysis the sensitivity of the main control parameters was explored to determine the dominant variables in the transition.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2017.386

Share

COinS