Author ORCID Identifier
Date Available
3-29-2020
Year of Publication
2020
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MSME)
College
Engineering
Department/School/Program
Mechanical Engineering
Advisor
Dr. Jesse B. Hoagg
Abstract
We present filtered-dynamic-inversion (FDI) control for unknown linear time-invariant systems that are multi-input multi-output and minimum phase with unknown-but-bounded relative degree. This FDI controller requires limited model information, specifically, knowledge of an upper bound on the relative degree and knowledge of the first nonzero Markov parameter. The FDI controller is a single-parameter high-parameter-stabilizing controller that is robust to uncertainty in the relative degree. We characterize the stability of the closed-loop system. We present numerical examples, where the FDI controller is implemented in feedback with mathematical and physical systems. The numerical examples demonstrate that the FDI controller for unknown relative degree is effective for stabilization, command following, and disturbance rejection. We demonstrate that for a sufficiently large parameter, the average power of the closed-loop performance is arbitrarily small.
Digital Object Identifier (DOI)
https://doi.org/10.13023/etd.2020.087
Recommended Citation
Kamat, Sumit Suryakant, "FILTERED-DYNAMIC-INVERSION CONTROL FOR UNKNOWN MINIMUM-PHASE SYSTEMS WITH UNKNOWN RELATIVE DEGREE" (2020). Theses and Dissertations--Mechanical Engineering. 149.
https://uknowledge.uky.edu/me_etds/149
Included in
Acoustics, Dynamics, and Controls Commons, Controls and Control Theory Commons, Control Theory Commons, Navigation, Guidance, Control, and Dynamics Commons