Author ORCID Identifier

https://orcid.org/0000-0002-2617-2957

Date Available

10-3-2019

Year of Publication

2019

Degree Name

Master of Science in Mechanical Engineering (MSME)

Document Type

Master's Thesis

College

Engineering

Department/School/Program

Mechanical Engineering

First Advisor

Dr. Alexandre Martin

Second Advisor

Dr. Suzanne Weaver Smith

Abstract

In order to enhance accessibility to microgravity research, the design process for experiments on the ISS must be streamlined and accessible to all scientific disciplines, not just aerospace engineers. Thus, a general design and analysis toolbox with accompanying best practices manual for microgravity liquid containment is proposed. The work presented in this thesis improves the design process by introducing a modular liquid tank design which can be filled, drained, or act as a passive liquid-gas separation device. It can also be pressurized, and used for aerosol spray. This tank can be modified to meet the design requirements of various experimental setups and liquids. Furthermore, rough simulations of this tank are presented and available to the user for modification. The simulation and design methodology for other general cases is discussed as well. After reading this thesis, the user should have a basic understanding of how liquids behave in microgravity. She will be able to run simple simulations, design, build, test, and fly a liquid management device which has been modified to suit the requirements of her specific experiment.

The general tank design can be manufactured using 3-D printing, traditional CNC milling, or a combination thereof. The design methodology and best practices presented here have been used to design tanks used in experiments on the International Space Station for Budweiser and Lambda Vision. Both tanks functioned nominally on orbit. While the specific data from these experiments cannot be presented due to proprietary restrictions, using this thesis as a design guide for new experiments should yield favorable results when applied to new tank designs. If the reader has any questions or would like an updated design process, the author’s preferred contact information can be found using the Orcid iD: 0000-0002-2617-2957 .

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.416

Funding Information

NASA NNX15AR69H

Share

COinS