Author ORCID Identifier

https://orcid.org/0000-0003-2489-2237

Date Available

4-18-2019

Year of Publication

2019

Degree Name

Master of Science in Mechanical Engineering (MSME)

Document Type

Master's Thesis

College

Engineering

Department/School/Program

Mechanical Engineering

First Advisor

Dr. Jonathan F. Wenk

Abstract

Change in papillary muscle motion as a result of left ventricular (LV) remodeling after posterolateral myocardial infarction is thought to contribute to ischemic mitral regurgitation. A finite element (FE) model of the LV was created from magnetic resonance images acquired immediately before myocardial infarction and 8 weeks later in a cohort of 12 sheep. Severity of mitral regurgitation was rated by two-dimensional echocardiography and regurgitant volume was estimated using MRI. Of the cohort, 6 animals (DC) received hydrogel injection therapy shown to limit ventricular remodeling after myocardial infarction while the control group (MI) received a similar pattern of saline injections. LV pressure was determined by direct invasive measurement and volume was estimated from MRI. FE models of the LV for each animal included both healthy and infarct tissue regions as well as a simulated hydrogel injection pattern for the DC group. Constitutive model material parameters for each region in the FE model were assigned based on results from previous research. Invasive LV pressure measurements at end diastole and end systole were used as boundary conditions to drive model simulations for each animal. Passive stiffness (C) and active material parameter (Tmax) were adjusted to match MRI estimations of LV volume at end systole and end diastole. Nodal positions of the chordae tendineae (CT) were determined by measurements obtained from the excised heart of each animal at the terminal timepoint. Changes in CT nodal displacements between end systole and end diastole at 0 and 8-week timepoints were used to investigate the potential contribution of changes in papillary muscle motion to the progression of ischemic mitral regurgitation after myocardial infarction. Nodal displacements were broken down into radial, circumferential, and longitudinal components relative to the anatomy of the individual animal model. Model results highlighted an outward radial movement in the infarct region after 8 weeks in untreated animals, while radial direction of motion observed in the treated animal group was preserved relative to baseline. Circumferential displacement decreased in the remote region in the untreated animal group after 8 weeks but was preserved relative to baseline in the treated animal group. MRI estimates of regurgitant volume increased significantly in the untreated animal group after 8 weeks but did not increase in the treated group. The results of this analysis suggest that hydrogel injection treatment may serve to limit changes in papillary muscle motion and severity of mitral regurgitation after posterolateral myocardial infarction.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.215

Funding Information

This study was supported by National Institutes of Health grants R01 HL063954 (R. Gorman) and U01 HL133359 (J. Wenk).

Share

COinS