Author ORCID Identifier
Date Available
5-3-2021
Year of Publication
2019
Document Type
Doctoral Dissertation
Degree Name
Doctor of Philosophy (PhD)
College
Engineering
Department/School/Program
Mechanical Engineering
Advisor
Dr. I.S. Jawahir
Abstract
The U.N. projects the world population to reach nearly 10 billion people by 2050, which will cause demand for manufactured goods to reach unforeseen levels. In order for us to produce the goods to support an equitable future, the methods in which we manufacture those goods must radically change. The emerging Circular Economy (CE) concept for production systems has promised to drastically increase economic/business value by significantly reducing the world’s resource consumption and negative environmental impacts. However, CE is inherently limited because of its emphasis on recycling and reuse of materials. CE does not address the holistic changes needed across all of the fundamental elements of manufacturing: products, processes, and systems. Therefore, a paradigm shift is required for moving from sustainment to sustainability to “produce more with less” through smart, innovative and transformative convergent manufacturing approaches rooted in redesigning next generation manufacturing infrastructure. This PhD research proposes the Helical Economy (HE) concept as a novel extension to CE. The proposed HE concepts shift the CE’s status quo paradigm away from post-use recovery for recycling and reuse and towards redesigning manufacturing infrastructure at product, process, and system levels, while leveraging IoT-enabled data infrastructures and an upskilled workforce.
This research starts with the conceptual overview and a framework for implementing HE in the discrete product manufacturing domain by establishing the future state vision of the Helical Economy Manufacturing Method (HEMM). The work then analyzes two components of the framework in detail: designing next-generation products and next-generation IoT-enabled data infrastructures. The major research problems that need to be solved in these subcomponents are identified in order to make near-term progress towards the HEMM. The work then proceeds with the development and discussion of initial methods for addressing these challenges. Each method is demonstrated using an illustrative industry example. Collectively, this initial work establishes the foundational body of knowledge for the HE and the HEMM, provides implementation methods at the product and IoT-enabled data infrastructure levels, and it shows a great potential for HE’s ability to create and maximize sustainable value, optimize resource consumption, and ensure continued technological progress with significant economic growth and innovation. This research work then presents an outlook on the future work needed, as well as calls for industry to support the continued refinement and development of the HEMM through relevant prototype development and subsequent applications.
Digital Object Identifier (DOI)
https://doi.org/10.13023/etd.2019.132
Recommended Citation
Bradley, Ryan T., "TRANSFORMING A CIRCULAR ECONOMY INTO A HELICAL ECONOMY FOR ADVANCING SUSTAINABLE MANUFACTURING" (2019). Theses and Dissertations--Mechanical Engineering. 135.
https://uknowledge.uky.edu/me_etds/135