Date Available
12-6-2017
Year of Publication
2017
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MSME)
College
Engineering
Department/School/Program
Mechanical Engineering
Advisor
Dr. Kozo Saito
Abstract
AISI 4140 alloy steel has been a very common material to be investigated in automotive and aerospace industries for several decades. AISI 4140 alloy steel is chromium, molybdenum, and manganese containing low alloy steel. It has high fatigue strength, abrasion and impact resistance, toughness, and torsional strength. The functional performance is largely determined by the surface states after machining.
The aim of the present study is to explore the polishing methods and surface analysis after machining AISI 4140 alloy steel in different cutting speeds and cooling conditions. The surface analysis includes surface roughness, hardness and residual stresses. Compared to traditional polishing, an innovative experimental work was conducted on electro-polishing technology for removing surface layer before subsurface residual stress measurement.
The results of this work show that the electro-polishing method is a significant approach for the residual stress analysis. High cutting speed and cooling conditions can improve the surface quality to achieve lower surface roughness, higher microhardness and more compressive residual stresses after machining AISI 4140 alloy steel.
Digital Object Identifier (DOI)
https://doi.org/10.13023/ETD.2017.490
Recommended Citation
Qi, Qiang, "INVESTIGATION OF POLISHING METHODS AND SURFACE ANALYSIS AFTER MACHINING AISI 4140 ALLOY STEEL" (2017). Theses and Dissertations--Mechanical Engineering. 107.
https://uknowledge.uky.edu/me_etds/107