Date Available

5-6-2021

Year of Publication

2021

Document Type

Doctoral Dissertation

Degree Name

Doctor of Philosophy (PhD)

College

Arts and Sciences

Department/School/Program

Mathematics

Advisor

Dr. Uwe Nagel

Abstract

Fix a family of ideals in a polynomial ring and consider the problem of finding a single ideal in the family that has Betti numbers that are greater than or equal to the Betti numbers of every ideal in the family. Or decide if this special ideal even exists. Bigatti, Hulett, and Pardue showed that if we take the ideals with a fixed Hilbert function, there is such an ideal: the lexsegment ideal. Caviglia and Murai proved that if we take the saturated ideals with a fixed Hilbert polynomial, there is also such an ideal. We present a generalization of these two situations, an algorithm for determining the existence of these special ideals and finding them when they do exist, and some cases where we guarantee existence.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2021.187

Included in

Algebra Commons

Share

COinS