Date Available

4-18-2018

Year of Publication

2018

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department/School/Program

Mathematics

First Advisor

Dr. Richard Ehrenborg

Abstract

In this dissertation we first introduce an extension of the notion of parking functions to cars of different sizes. We prove a product formula for the number of such sequences and provide a refinement using a multi-parameter extension of the Abel--Rothe polynomial. Next, we study the incidence Hopf algebra on the noncrossing partition lattice. We demonstrate a bijection between the terms in the canceled chain decomposition of its antipode and noncrossing hypertrees. Thirdly, we analyze the sum of the π‘Ÿth powers of the descent set statistic on permutations and how many small prime factors occur in these numbers. These results depend upon the base 𝑝 expansion of both the dimension and the power of these statistics. Finally, we inspect the Ζ’-vector of the descent polytope DPv, proving a maximization result using an analogue of the boustrophedon transform.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2018.149

Share

COinS