Abstract

In order to determine the effect of UV radiation on β-defensin 3 (BD3) expression in human skin, freshly-isolated UV-naïve skin was obtained from newborn male infants undergoing planned circumcision. Skin explants sustained ex vivo dermis side down on RPMI media were exposed to 0.5 kJ/m2 UVB, and biopsies were taken from the explant through 72 hours after radiation. mRNA expression was measured by qRTPCR and normalized to TATA-binding protein. BD3 expression at each time point was compared with an untreated control taken at time 0 within each skin sample. Extensive variability in both the timing and magnitude of BD3 induction across individuals was noted and was not predicted by skin pigment phenotype, suggesting that BD3 induction was not influenced by epidermal melanization. However, a mock-irradiated time course demonstrated UV-independent BD3 mRNA increases across multiple donors which was not further augmented by treatment with UV radiation, suggesting that factors other than UV damage promoted increased BD3 expression in the skin explants. We conclude that BD3 expression is induced in a UV-independent manner in human skin explants processed and maintained in standard culture conditions, and that neonatal skin explants are an inappropriate model with which to study the effects of UV on BD3 induction in whole human skin.

Document Type

Article

Publication Date

2-19-2015

Notes/Citation Information

Published in F1000 Research, v. 3, article 288, p. 1-16.

© 2015 Wolf Horrell E and D'Orazio J. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Digital Object Identifier (DOI)

http://dx.doi.org/10.12688/f1000research.5794.2

Included in

Oncology Commons

Share

COinS