Date Available
1-25-2015
Year of Publication
2015
Document Type
Doctoral Dissertation
Degree Name
Doctor of Philosophy (PhD)
College
Education
Department/School/Program
Kinesiology and Health Promotion
Advisor
Dr. Robert Shapiro
Abstract
Human locomotion is phenomenon that is extraordinarily complex. It is evident that a complete description of locomotion involves consideration of kinematics, kinetics, and muscle activity of the extremities in all of their various movements. Race walking (RW) is a form of upright locomotion that differs from normal walking and running by its form dictated by the International Amateur Athletics Federation (IAAF). Despite the similarities to both normal walking (NW) and running (RU), RW has not been the subject of equally intensive investigations.
This study explores the comprehensive biomechanics of race walking and how it compares to NW and RU. A quantitative approach was used to evaluate kinematic, kinetic and muscle activity variables between race walking and both normal walking and running. A cross-sectional, laboratory design was used on 15 recreationally competitive race walkers to evaluate these variables.
Based on the results of this study, RW is an intermediate gait between NW and RU that has characteristics of both gaits, but is still a unique gait in itself. While there are differences between RW and both RU and NW, some of the expected differences between RW and the two gaits did not occur. Significantly greater frontal plane pelvis-trunk joint range of motion and sagittal plane peak hip flexor and extensor moments, hip joint range of motion and rectus femoris muscle activity contribute to the significant differences in both RW and NW, and RW and RU.
Significant differences between RW and RU showed that RU requires more contribution from the trunk, pelvis and lower extremities kinematically and kinetically, as well as increased muscle activation, to execute the motion than RW. Conversely, RW requires more contribution from these variables than NW does, but in not as great a capacity as RU compared to RW. In spite of these findings, there were some variables that had no significant differences between RW and RU. This suggests that injuries during RW are similar to those during RU, but may not occur as frequently.
Recommended Citation
Norberg, Jaclyn D., "Biomechanical Analysis of Race Walking Compared to Normal Walking and Running Gait" (2015). Theses and Dissertations--Kinesiology and Health Promotion. 20.
https://uknowledge.uky.edu/khp_etds/20