Abstract
BACKGROUND: The Kentucky Cancer Registry (KCR) is a central cancer registry for the state of Kentucky that receives data about incident cancer cases from all healthcare facilities in the state within 6 months of diagnosis. Similar to all other U.S. and Canadian cancer registries, KCR uses a data dictionary provided by the North American Association of Central Cancer Registries (NAACCR) for standardized data entry. The NAACCR data dictionary is not an ontological system. Mapping between the NAACCR data dictionary and the National Cancer Institute (NCI) Thesaurus (NCIt) will facilitate the enrichment, dissemination and utilization of cancer registry data. We introduce a web-based system, called Interactive Mapping Interface (IMI), for creating mappings from data dictionaries to ontologies, in particular from NAACCR to NCIt.
METHOD: IMI has been designed as a general approach with three components: (1) ontology library; (2) mapping interface; and (3) recommendation engine. The ontology library provides a list of ontologies as targets for building mappings. The mapping interface consists of six modules: project management, mapping dashboard, access control, logs and comments, hierarchical visualization, and result review and export. The built-in recommendation engine automatically identifies a list of candidate concepts to facilitate the mapping process.
RESULTS: We report the architecture design and interface features of IMI. To validate our approach, we implemented an IMI prototype and pilot-tested features using the IMI interface to map a sample set of NAACCR data elements to NCIt concepts. 47 out of 301 NAACCR data elements have been mapped to NCIt concepts. Five branches of hierarchical tree have been identified from these mapped concepts for visual inspection.
CONCLUSIONS: IMI provides an interactive, web-based interface for building mappings from data dictionaries to ontologies. Although our pilot-testing scope is limited, our results demonstrate feasibility using IMI for semantic enrichment of cancer registry data by mapping NAACCR data elements to NCIt concepts.
Document Type
Article
Publication Date
12-15-2020
Digital Object Identifier (DOI)
https://doi.org/10.1186/s12911-020-01288-7
Funding Information
This work was supported by the National Institutes of Health (NIH) through grant R21CA231904. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. Publication costs are funded by R21CA231904.
Related Content
The IMI system is available at https://epi-tome.com.
Repository Citation
Tao, Shiqiang; Zeng, Ningzhou; Hands, Isaac; Hurt-Mueller, Joseph; Durbin, Eric B.; Cui, Licong; and Zhang, Guoqiang, "Web-Based Interactive Mapping from Data Dictionaries to Ontologies, with an Application to Cancer Registry" (2020). Internal Medicine Faculty Publications. 221.
https://uknowledge.uky.edu/internalmedicine_facpub/221
Notes/Citation Information
Published in BMC Medical Informatics and Decision Making, v. 20, suppl. 10, article number: 271.
© The Author(s) 2020
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.