Track 2-05: Carbon Sequestration and Cycling
Description
We discuss how grazing by large herbivores as a land use option does not necessarily involve a trade-off in terms of soil carbon (C) storage, by presenting results from field grazing gradient experiments from rangeland ecosystems under different climatic conditions in semiarid grasslands from Central Mexico and temperate ecosystems from Northern England. In general, moderate grazing pressure did not reduce soil C in both ecosystems after comparisons with long-term grazing exclusions, and moderate grazing even showed higher soil C in the semiarid area. In the semiarid area, our results are likely explained by grazing tolerance of plant species in moderate grazing pressure, and by effects of herbivores on plant community structure and proportion of bare soil in heavy grazing pressure. In the temperate area, C losses might be more linked to temperature-limitation on heterotrophic soil C respiration. Our results indicate that moderate grazing is compatible with soil C storage, although we also provide warnings against this generalisation under scenarios of climate warming.
Citation
Medina-Roldán, Eduardo; Paz-Ferreiro, Jorge; Arredondo, J. Tulio; Huber-Sannwald, Elisabeth; and Bardgett, Richard D., "Contrasting Impacts of Grazing on Soil Properties and Plant Communities between Semiarid and Temperate Rangeland Ecosystems" (2020). IGC Proceedings (1993-2023). 1.
https://uknowledge.uky.edu/igc/22/2-5/1
Included in
Contrasting Impacts of Grazing on Soil Properties and Plant Communities between Semiarid and Temperate Rangeland Ecosystems
We discuss how grazing by large herbivores as a land use option does not necessarily involve a trade-off in terms of soil carbon (C) storage, by presenting results from field grazing gradient experiments from rangeland ecosystems under different climatic conditions in semiarid grasslands from Central Mexico and temperate ecosystems from Northern England. In general, moderate grazing pressure did not reduce soil C in both ecosystems after comparisons with long-term grazing exclusions, and moderate grazing even showed higher soil C in the semiarid area. In the semiarid area, our results are likely explained by grazing tolerance of plant species in moderate grazing pressure, and by effects of herbivores on plant community structure and proportion of bare soil in heavy grazing pressure. In the temperate area, C losses might be more linked to temperature-limitation on heterotrophic soil C respiration. Our results indicate that moderate grazing is compatible with soil C storage, although we also provide warnings against this generalisation under scenarios of climate warming.