Track 1-13: Monitoring and Managing Grass and Forage Biomass Resources at the Landscape Level

Description

Assessment of grazing-induced degradation of arid and semi-arid rangelands with stochastic rainfall regimes is challenging. For the last two decades, rangeland ecologists have been discussing the relative importance of biotic and abiotic factors in controlling vegetation dynamics. According to the non-equilibrium concept, which emerged as a new paradigm to describe ecosystems in highly variable and poorly predictable environments, vegetation dynamics are driven primarily by abiotic factors such as rainfall, rather than by internal biotic regulation (e.g. grazing impact). Although a number of studies have emphasized the non-equilibrium nature of most rangelands, they have produced inconsistent results and there is still no consensus on the relative importance of grazing impact. Alternatively, recent studies have suggested that a continuum of systems exists, rather than a stark dichotomy between equilibrium and non-equilibrium rangelands. Moreover, theoretical studies have predicted that, in addition to climatic variability, resource variations occurring in space and time as a result of landscape heterogeneity should be taken into account in assessments of grazing impact. However, there have been few empirical studies of the role of resource variations in either mitigating or enhancing the impacts of grazing on vegetation.

This study explores the impact of grazing strategies on vegetation in Mongolian rangelands under high climatic variability. Specifically, it is focused on key resource areas, defined in terms of the key factor determining livestock population, and thus the ability to forage during drought. Based on the prediction proposed by Illius and O’Connor (1999) that animal numbers are regulated in a density-dependent manner by the limited forage availability in key resource areas, we established and examined the hypothesis that grazing impacts would be greater in key resource areas than in other areas even in Mongolian rangelands.

Share

COinS
 

Resource Variations across the Landscape Mediate the Impact of Grazing on Vegetation in Mongolian Rangeland under High Climatic Variability

Assessment of grazing-induced degradation of arid and semi-arid rangelands with stochastic rainfall regimes is challenging. For the last two decades, rangeland ecologists have been discussing the relative importance of biotic and abiotic factors in controlling vegetation dynamics. According to the non-equilibrium concept, which emerged as a new paradigm to describe ecosystems in highly variable and poorly predictable environments, vegetation dynamics are driven primarily by abiotic factors such as rainfall, rather than by internal biotic regulation (e.g. grazing impact). Although a number of studies have emphasized the non-equilibrium nature of most rangelands, they have produced inconsistent results and there is still no consensus on the relative importance of grazing impact. Alternatively, recent studies have suggested that a continuum of systems exists, rather than a stark dichotomy between equilibrium and non-equilibrium rangelands. Moreover, theoretical studies have predicted that, in addition to climatic variability, resource variations occurring in space and time as a result of landscape heterogeneity should be taken into account in assessments of grazing impact. However, there have been few empirical studies of the role of resource variations in either mitigating or enhancing the impacts of grazing on vegetation.

This study explores the impact of grazing strategies on vegetation in Mongolian rangelands under high climatic variability. Specifically, it is focused on key resource areas, defined in terms of the key factor determining livestock population, and thus the ability to forage during drought. Based on the prediction proposed by Illius and O’Connor (1999) that animal numbers are regulated in a density-dependent manner by the limited forage availability in key resource areas, we established and examined the hypothesis that grazing impacts would be greater in key resource areas than in other areas even in Mongolian rangelands.