Theme 12: Forage Breeding and Genetics

Description

Photoperiod response has been found to influence the growth and development of >Pensacola' derived bahiagrass (Paspalum notatum Flugge var. saure Parodi). Four selection cycles [>Pensacola= (Cycle 0), Cycle 4, >Tifton 9' (Cycle 9) and Cycle 23] resulting from recurrent restricted phenotypic selection (RRPS) of spaced-plants, were field grown in 1999 and 2000, to study photoperiod sensitivity among genotypes. Two day-length treatments were imposed on the field grown plants. One treatment, used only natural light. The second treatment imposed an extended day-length treatment using Quartz-halogen lamps, installed in the field during the fall and winter, to extend day-length to15 hours. The top growth of individual plants was harvested three times during the fall and winter seasons and stolon spread was measured in mid February, 2000. Top growth was increased by the extended day-length treatment for Pensacola and RRPS Cycle 4 in all three harvest dates. Top growth of Tifton 9 was unaffected by the extended light for the September harvest, but increased in the late October and late January harvests. RRPS Cycle 23 plants grown under natural light, out-yielded the plants grown under extended light treatment, for the first two harvests. There were no differences in yields of RRPS Cycle 23 plants from extended or natural light from the January harvest. The later cycles, Tifton 9 and RRPS Cycle 23, were less sensitive to day-length, than RRPS Cycles 0 and 4. Extended daylength, for all cycles, dramatically reduced stolon spread by nearly half that of the plants grown under natural light. Results from this experiment demonstrate a high sensitivity in growth and development of Pensacola-derived bahiagrass to day-length.

Share

COinS
 

Photoperiod Response in Pensacola Bahiagrass

Photoperiod response has been found to influence the growth and development of >Pensacola' derived bahiagrass (Paspalum notatum Flugge var. saure Parodi). Four selection cycles [>Pensacola= (Cycle 0), Cycle 4, >Tifton 9' (Cycle 9) and Cycle 23] resulting from recurrent restricted phenotypic selection (RRPS) of spaced-plants, were field grown in 1999 and 2000, to study photoperiod sensitivity among genotypes. Two day-length treatments were imposed on the field grown plants. One treatment, used only natural light. The second treatment imposed an extended day-length treatment using Quartz-halogen lamps, installed in the field during the fall and winter, to extend day-length to15 hours. The top growth of individual plants was harvested three times during the fall and winter seasons and stolon spread was measured in mid February, 2000. Top growth was increased by the extended day-length treatment for Pensacola and RRPS Cycle 4 in all three harvest dates. Top growth of Tifton 9 was unaffected by the extended light for the September harvest, but increased in the late October and late January harvests. RRPS Cycle 23 plants grown under natural light, out-yielded the plants grown under extended light treatment, for the first two harvests. There were no differences in yields of RRPS Cycle 23 plants from extended or natural light from the January harvest. The later cycles, Tifton 9 and RRPS Cycle 23, were less sensitive to day-length, than RRPS Cycles 0 and 4. Extended daylength, for all cycles, dramatically reduced stolon spread by nearly half that of the plants grown under natural light. Results from this experiment demonstrate a high sensitivity in growth and development of Pensacola-derived bahiagrass to day-length.