Date Available

6-6-2011

Year of Publication

2011

Degree Name

Master of Science (MS)

Document Type

Thesis

College

Arts and Sciences

Department

Chemistry

First Advisor

Dr. John Anthony

Abstract

Stable organic semiconductors are critical to produce inexpensive, efficient and flexible thin film organic solar cells. A current chemical focus is the synthesis of stable, electron-accepting materials to be utilized as an acceptor layer in photovoltaics.1 The Anthony group has shown that the functionalization of pentacene with suitable electron withdrawing groups provides a catalog of suitable acceptors for this purpose.2 These pentacenes can be further modified to pack in a unique 1-dimensional "sandwich herringbone" crystal packing, leading to improved device current.3 To improve the stability of acene acceptors, we have taken two hetero-atom themed approaches. First, we have studied the acenequinone as an electron-accepting chromophore.4 Further, we replaced the terminal aromatic rings with heterocycles, such as furan or thiophene. In order to enhance the crystal engineering versatility of the chromophore, we utilize c-fused heterocycles (rather than the more commonly used b-fused cycles seen in e.g. anthradithiophenes). The c-fused acenequinones can be tetra-functionalized with silylethynyl groups to influence crystal packing and increase solubility.5 The silylethyne groups are known to increase the photostability and lower the energy gap (Eg) of pentacenes.5 The functionalization of the silylethyne groups also aids in lowering the lowest unoccupied orbital (LUMO) of acene structures.5

Included in

Chemistry Commons

Share

COinS