Date Available

3-27-2012

Year of Publication

2011

Degree Name

Master of Science in Mechanical Engineering (MSME)

Document Type

Thesis

College

Engineering

Department

Mechanical Engineering

First Advisor

Dr. Yuebin Charles Lu

Abstract

The nanoindentation technique has been used to identify the interfaces between dissimilar materials and subsequently to evaluate the physical and mechanical properties across the interfaces. The interfaces could represent the interface (transition face) between oxidized and unoxidized polymers, the interface between rigid fiber and polymer matrix, or other similar situations. It is proposed to use a nanoindenter equipped with small spherical tip to indent across the interfaces of dissimilar materials. The proposed method has been validated by conducting a large number of virtual experiments through 3-dimensional finite element simulations, by varying the properties of the two dissimilar materials, including various combinations of modulus (E1/E2), yield strength (σy1y2), hardening index (n1/n2), interface sizes (R/T), Poisson’s ratio (ν), etc. The mechanical properties across the interfaces have been obtained, and a quantitative model for predicting the interface sizes has been established.

Share

COinS