Date Available
4-13-2011
Year of Publication
2010
Degree Name
Master of Science in Electrical Engineering (MSEE)
Document Type
Thesis
College
Engineering
Department
Electrical Engineering
First Advisor
Dr. Vijay P. Singh
Abstract
Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array. An in-house battery protection system and charge balancing system ensure safe and efficient use of the batteries. Various electrical sub-systems on the car communicate among each other via Controller Area Network (CAN). This real time data is then transmitted to an external computer via RF communication for data collection.
Recommended Citation
Prayaga, Krishna Venkatesh, "ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV" (2010). University of Kentucky Master's Theses. 29.
https://uknowledge.uky.edu/gradschool_theses/29