Date Available
12-7-2011
Year of Publication
2001
Document Type
Thesis
College
Engineering
Department
Computer Science
First Advisor
Christopher O. Jaynes
Abstract
We introduce a hybrid approach in which images of an urban scene are automatically alignedwith a base geometry of the scene to determine model-relative external camera parameters. Thealgorithm takes as input a model of the scene and images with approximate external cameraparameters and aligns the images to the model by extracting the facades from the images andaligning the facades with the model by minimizing over a multivariate objective function. Theresulting image-pose pairs can be used to render photo-realistic views of the model via texturemapping.Several natural extensions to the base hybrid reconstruction technique are also introduced. Theseextensions, which include vanishing point based calibration refinement and video stream basedreconstruction, increase the accuracy of the base algorithm, reduce the amount of data that mustbe provided by the user as input to the algorithm, and provide a mechanism for automaticallycalibrating a large set of images for post processing steps such as automatic model enhancementand fly-through model visualization.Traditionally, photo-realistic urban reconstruction has been approached from purely image-basedor model-based approaches. Recently, research has been conducted on hybrid approaches, whichcombine the use of images and models. Such approaches typically require user assistance forcamera calibration. Our approach is an improvement over these methods because it does notrequire user assistance for camera calibration.
Recommended Citation
Partington, Mike, "AUTOMATIC IMAGE TO MODEL ALIGNMENT FOR PHOTO-REALISTIC URBAN MODEL RECONSTRUCTION" (2001). University of Kentucky Master's Theses. 218.
https://uknowledge.uky.edu/gradschool_theses/218