Date Available
4-25-2011
Year of Publication
2010
Degree Name
Doctor of Philosophy (PhD)
Document Type
Dissertation
College
Engineering
Department
Computer Science
First Advisor
Jun Zhang, Ph.D.
Abstract
Scientific computing and computer simulation play an increasingly important role in scientific investigation and engineering designs, supplementing traditional experiments, such as in automotive crash studies, global climate change, ocean modeling, medical imaging, and nuclear weapons. The numerical simulation is much cheaper than experimentation for these application areas and it can be used as the third way of science discovery beyond the experimental and theoretical analysis. However, the increasing demand of high resolution solutions of the Partial Differential Equations (PDEs) with less computational time has increased the importance for researchers and engineers to come up with efficient and scalable computational techniques that can solve very large-scale problems. In this dissertation, we build an efficient and highly accurate computational framework to solve PDEs using high order discretization schemes and multiscale multigrid method.
Since there is no existing explicit sixth order compact finite difference schemes on a single scale grids, we used Gupta and Zhang’s fourth order compact (FOC) schemes on different scale grids combined with Richardson extrapolation schemes to compute the sixth order solutions on coarse grid. Then we developed an operator based interpolation scheme to approximate the sixth order solutions for every find grid point. We tested our method for 1D/2D/3D Poisson and convection-diffusion equations.
We developed a multiscale multigrid method to efficiently solve the linear systems arising from FOC discretizations. It is similar to the full multigrid method, but it does not start from the coarsest level. The major advantage of the multiscale multigrid method is that it has an optimal computational cost similar to that of a full multigrid method and can bring us the converged fourth order solutions on two grids with different scales. In order to keep grid independent convergence for the multiscale multigrid method, line relaxation and plane relaxation are used for 2D and 3D convection diffusion equations with high Reynolds number, respectively. In addition, the residual scaling technique is also applied for high Reynolds number problems.
To further optimize the multiscale computation procedure, we developed two new methods. The first method is developed to solve the FOC solutions on two grids using standardW-cycle structure. The novelty of this strategy is that we use the coarse level grid that will be generated in the standard geometric multigrid to solve the discretized equations and achieve higher order accuracy solution. It is more efficient and costs less CPU and memory compared with the V-cycle based multiscale multigrid method.
The second method is called the multiple coarse grid computation. It is first proposed in superconvergent multigrid method to speed up the convergence. The basic idea of multigrid superconvergent method is to use multiple coarse grids to generate better correction for the fine grid solution than that from the single coarse grid. However, as far as we know, it has never been used to increase the order of solution accuracy for the fine grid. In this dissertation, we use the idea of multiple coarse grid computation to approximate the fourth order solutions on every coarse grid and fine grid. Then we apply the Richardson extrapolation for every fine grid point to get the sixth order solutions.
For parallel implementation, we studied the parallelization and vectorization potential of the Gauss-Seidel relaxation by partitioning the grid space with four colors for solving 3D convection-diffusion equations. We used OpenMP to parallelize the loops in relaxation and residual computation. The numerical results show that the parallelized and the sequential implementation have the same convergence rate and the accuracy of the computed solutions.
Recommended Citation
Wang, Yin, "HIGH ACCURACY MULTISCALE MULTIGRID COMPUTATION FOR PARTIAL DIFFERENTIAL EQUATIONS" (2010). University of Kentucky Doctoral Dissertations. 65.
https://uknowledge.uky.edu/gradschool_diss/65