Date Available


Year of Publication


Document Type





Mechanical Engineering

First Advisor

M. Pinar Mengüç

Second Advisor

R. Ryan Vallance


Nano-manufacturing is receiving significant attention in industry due to the ever-growing interest in nanotechnology in research institutions. It is hypothesized that single-step or direct-write nano-scale machining might be achieved by coupling nano-probe field emission with radiation transfer. A laser may be used to heat a workpiece within a microscopic region that encloses an even smaller nanoscopic region subjected to a focused electron beam. The electron-beam supplies marginal heat sufficient to remove a minute volume of material by evaporation or sublimation. Experimentally investigating this hypothesis requires an estimate of the power needed in the electron-beam. To this end, a detailed numerical study is conducted to study the possibility of using the nano-probe field emission for nano-machining. The modeling effort in this case is divided into two parts. The first part deals with the electron-beam propagation inside a target workpiece. The second part considers the temperature increase due to the energy transfer between the electron-beam and the workpiece itself. A Monte Carlo/Ray Tracing technique is used in modeling the electron-beam propagation. This approach is identical to that of a typical Monte Carlo simulation in radiative transfer, except that proper electron scattering properties are employed. The temperature distribution inside a gold film is predicted using the heat conduction equations. Details of the various numerical models employed in the simulation and a series of representative results will be presented in this dissertation.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.