Date Available

12-14-2011

Year of Publication

2006

Document Type

Dissertation

College

Arts and Sciences

Department

Mathematics

First Advisor

Sung Ha Kang

Abstract

In this digital age, it is more important than ever to have good methods for processing images. We focus on the removal of blur from a captured image, which is called the image deblurring problem. In particular, we make no assumptions about the blur itself, which is called a blind deconvolution. We approach the problem by miniming an energy functional that utilizes total variation norm and a fidelity constraint. In particular, we extend the work of Chan and Wong to use a reference image in the computation. Using the shock filter as a reference image, we produce a superior result compared to existing methods. We are able to produce good results on non-black background images and images where the blurring function is not centro-symmetric. We consider using a general Lp norm for the fidelity term and compare different values for p. Using an analysis similar to Strong and Chan, we derive an adaptive scale method for the recovery of the blurring function. We also consider two numerical methods in this disseration. The first method is an extension of Picards method for PDEs in the discrete case. We compare the results to the analytical Picard method, showing the only difference is the use of the approximation versus exact derivatives. We relate the method to existing finite difference schemes, including the Lax-Wendroff method. We derive the stability constraints for several linear problems and illustrate the stability region is increasing. We conclude by showing several examples of the method and how the computational savings is substantial. The second method we consider is a black-box implementation of a method for solving the generalized eigenvalue problem. By utilizing the work of Golub and Ye, we implement a routine which is robust against existing methods. We compare this routine against JDQZ and LOBPCG and show this method performs well in numerical testing.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.