Date Available


Year of Publication


Document Type





Electrical Engineering

First Advisor

Lawrence E. Holloway


By the name HALFSPACE SYSTEMS, this dissertation refers to systems whose dynamics are modeled by linear constraints of the form Exk+1 <= Fxk + Buk (where E, F 2 andlt;mn, B 2 andlt;mp). This dissertation explores the concepts of BOUNDEDNESS, STABILITY, IRREDUNDANCY, and MAINTAINABILITY (which is the same as REACHABILITY OF A TARGET TUBE) that are related to the control of halfspace systems. Given that a halfspace system is bounded, and that a given static target tube is reachable for this system, this dissertation presents algorithms to MAINTAIN the system in this target tube. A DIFFERENCE INCLUSION has the form xk+1 = Axk + Buuk, where xk, xk+1 2 andlt;n, uk 2 andlt;p, A 2 andlt;nn, Bu 2 andlt;np, Ai 2 andlt;nn, Bj 2 andlt;np, and A and Bu belong to the convex hulls of (A1,A2, . . . ,Aq) and (B1, B2, . . . , Br) respectively. This dissertation investigates the possibility that halfspace systems have equivalent difference inclusion representation for the case of uk = 0. An affirmitive result in this direction may make it possible to apply to halfspace systems the control theory that exists for difference inclusions.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.