Year of Publication

2019

Degree Name

Master of Science in Forest and Natural Resource Sciences (MSFNRS)

Document Type

Master's Thesis

College

Agriculture, Food and Environment

Department

Forestry and Natural Resources

First Advisor

Dr. Jian Yang

Second Advisor

Dr. Chris Barton

Abstract

Beekeepers in Appalachia market varietal honeys derived from particular species of deciduous trees; however, finding places in a mountainous landscape to locate new beeyards is difficult. Site selection is hindered by the high up-front costs of negotiating access to remote areas with limited knowledge of the available forage. Remotely sensed data and species distribution modeling (SDM) of trees important to beekeepers could aid in locating apiary sites at the landscape scale. The objectives of this study are i) using publicly available forest inventory data, to model the spatial distribution of three native tree species that are important to honey producers in eastern Kentucky: American Basswood, Sourwood and Tulip Poplar, and to assess the accuracy of the models, ii) to incorporate a method for discounting the value of a nectar resource as a function of distance based on an energetic model of honeybee foraging, and iii) to provide an example by ranking potential apiary locations around the perimeter of a mine site in the study area based on their proximity to probable species habitat using a GIS model.

Logistic regression models were trained using presence-absence records from 1,059 USFS Forest Inventory and Analysis (FIA) sub-plots distributed throughout a 9,000 km2 portion of the Kentucky River watershed. The models were evaluated by applying them to a separate dataset, 950 forest inventory sub-plots distributed over a 40.5 km2 research forest maintained by the University of Kentucky. Weights derived from an energic model of honeybee foraging were then applied to the probabilities of tree species occurrence predicted by the SDM. As an example, 24 potential apiary locations around the perimeter of a reclaimed mine site were selected and then ranked according to a site suitability index. Three tributary areas corresponding to different honeybee flight ranges were considered: 500m, 700m, and 1,200m. Results confirm that rankings are dependent on the foraging range considered, suggesting that the number of colonies at an apiary location would be an important factor to consider when choosing a site. However, the methodology makes assumptions that are only anecdotally supported, notably i) that colonies will forage preferentially at the target species when it is in bloom and, ii) that foragers will exhaust resources closest to the hive first, regardless of patch size. Additional study of how bees deplete the nectar resources surrounding an apiary is needed to verify the usefulness of SDM in site selection for varietal honey production.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.098

Share

COinS