Author ORCID Identifier

http://orcid.org/0000-0002-3594-7881

Year of Publication

2016

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Education

Department

Education Sciences

First Advisor

Dr. Rebecca Krall

Abstract

The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student’s concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, co-operative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier’s principle (LCP) etc. Kress et al (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone.

Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student’s mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative interviews pre and post revealed students’ mental model or thought process towards chemical equilibrium. Simulations used in the study were developed using the SCRATCH software platform. In order to test the effect of visualization tool on students’ conceptual understanding of chemical equilibrium, an ANCOVA analysis was conducted.

Results from a one-factor ANCOVA showed posttest scores were significantly higher for the experimental group (Mpostadj. = 7.27 SDpost = 1.387) relative to the control group (Mpostadj. = 2.67, SDpost = 1.371) after adjusting for pretest scores, 𝐹 (1,24) = 71.82, 𝑀𝑆𝐸 = 1.497, 𝑝 = 0.03, 𝜂𝑝2 = 0.75, 𝑑 = 3.33.

Cohen’s d was converted to an attenuated effect size d* using the procedure outlined in Thompson (2006). The adjusted (for pretest scores) group mean difference estimate without measure error correction for the posttest scores and the pretest scores was 4.2 with a Cohen’s d = 3.04.

An alternate approach reported in Cho and Preacher (2015) was used to determine effect size. The adjusted (for pretest scores) group mean difference estimate with measurement error correction only for the posttest scores (but not with measurement error correction for the pretest scores) was 4.99 with a Cohen’s d = 3.61. Finally, the adjusted (for pretest scores) group mean difference estimate with measurement error correction for both pretest and posttest scores was 4.23 with a Cohen’s d = 3.07. From a quantitative perspective, these effect size indicate a strong relationship between the experimental intervention provided and students’ conceptual understanding of chemical equilibrium concepts. That is, those students who received the experimental intervention had exceptionally higher.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2016.403

Share

COinS