Date Available

6-10-2014

Year of Publication

2014

Document Type

Master's Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

College

Engineering

Department/School/Program

Electrical and Computer Engineering

Faculty

Dr. Yuan Liao

Faculty

Dr. Cai-Cheng Lu

Abstract

In any power system, fault means abnormal flow of current. Insulation breakdown is the cause of fault generation. Different factors can cause the breakdown: Wires drifting together in the wind, Lightning ionizing air, wires with contacts of animals and plants, Salt spray or pollution on insulators. The common type of faults on a three phase system are single line-to-ground (SLG), Line-to-line faults (LL), double line-to-ground (DLG) faults, and balanced three phase faults. And these faults can be symmetrical (balanced) or Unsymmetrical (imbalanced).In this Study, a technique to predict the zero crossing point has been discussed and simulated. Zero crossing point prediction for reliable transmission and distribution plays a significant role. Electrical power control switching works in zero crossing point when a fault occurs. The precision of measuring zero crossing point for syncing power system control and instrumentation requires a thoughtful approach to minimize noise and external signals from the corrupted waveforms A faulted current waveform with estimated faulted phase/s, the technique is capable of identifying the time of zero crossing point. Proper Simulation has been organized on MATLAB R2012a.

Share

COinS