Date Available

4-26-2019

Year of Publication

2019

Document Type

Master's Thesis

Degree Name

Master of Science in Electrical Engineering (MSEE)

College

Engineering

Department/School/Program

Electrical and Computer Engineering

Advisor

Dr. Gregory Heileman

Abstract

Considering the significant investment of higher education made by students and their families, graduating in a timely manner is of the utmost importance. Delay attributed to drop out or the retaking of a course adds cost and negatively affects a student’s academic progression. Considering this, it becomes paramount for institutions to focus on student success in relation to term scheduling.

Often overlooked, complexity of a course schedule may be one of the most important factors in whether or not a student successfully completes his or her degree. More often than not students entering an institution as a first time full time (FSFT) freshman follow the advised and published schedule given by administrators. Providing the optimal schedule that gives the student the highest probability of success is critical.

In efforts to create this optimal schedule, this thesis introduces a novel optimization algorithm with the objective to separate courses which when taken together hurt students’ pass rates. Inversely, we combine synergistic relationships that improve a students probability for success when the courses are taken in the same semester. Using actual student data at the University of Kentucky, we categorically find these positive and negative combinations by analyzing recorded pass rates. Using Julia language on top of the Gurobi solver, we solve for the optimal degree plan of a student in the electrical engineering program using a linear and non-linear multi-objective optimization. A user interface is created for administrators to optimize their curricula at main.optimizeplans.com.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.147

Share

COinS