Abstract
The relationship between osteoblast-specific insulin signaling, osteocalcin activation and gluco-metabolic homeostasis has proven to be complex and potentially inconsistent across animal-model systems and in humans. Moreover, the impact of postnatally acquired, osteoblast-specific insulin deficiency on the pancreas-to-skeleton-to-pancreas circuit has not been studied. To explore this relationship, we created a model of postnatal elimination of insulin signaling in osteoprogenitors. Osteoprogenitor-selective ablation of the insulin receptor was induced after ~10 weeks of age in IRl°x/lox/Osx-Cre+/− genotypic male and female mice (designated postnatal-OIRKO). At ~21 weeks of age, mice were then phenotypically and metabolically characterized. Postnatal-OIRKO mice demonstrated a significant reduction in circulating concentrations of undercarboxylated osteocalcin (ucOC), in both males and females compared with control littermates. However, no differences were observed between postnatal-OIRKO and control mice in: body composition (lean or fat mass); fasting serum insulin; HbA1c; glucose dynamics during glucose tolerance testing; or in pancreatic islet area or islet morphology, demonstrating that while ucOC is impacted by insulin signaling in osteoprogenitors, there appears to be little to no relationship between osteocalcin, or its derivative (ucOC), and glucose homeostasis in this model.
Document Type
Article
Publication Date
6-1-2020
Digital Object Identifier (DOI)
https://doi.org/10.1038/s41598-020-65717-3
Funding Information
The authors acknowledge and appreciate support for this work, provided by grants from the National Institutes of Health, R56DK084045 (to J.L.F.) and R21AR070620 (to K.M.T); as well as funding from the University of Kentucky Barnstable Brown Diabetes Center Research Endowment.
Repository Citation
Fowlkes, John L.; Bunn, R. Clay; Kalaitzoglou, Evangelia; Ray, Phil; Popescu, Iuliana; and Thrailkill, Kathryn M., "Postnatal Loss of the Insulin Receptor in Osteoprogenitor Cells Does Not Impart a Metabolic Phenotype" (2020). Barnstable Brown Diabetes Center Faculty Publications. 8.
https://uknowledge.uky.edu/diabetes_facpub/8
Supplementary information
Notes/Citation Information
Published in Scientific Reports, v. 10, issue 1, 8842, p. 1-8.
© The Author(s) 2020
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.