Abstract
BACKGROUND: Cardiovascular magnetic resonance (CMR) of ventricular structure and function is widely performed using cine balanced steady state free precession (bSSFP) MRI. The bSSFP signal of myocardium is weighted by magnetization transfer (MT) and T1/T2-relaxation times. In edematous and fibrotic tissues, increased T2 and reduced MT lead to increased signal intensity on images acquired with high excitation flip angles. We hypothesized that acquisition of two differentially MT-weighted bSSFP images (termed 2-point bSSFP) can identify tissue that would enhance with gadolinium similar to standard of care late gadolinium enhancement (LGE).
METHODS: Cine bSSFP images (flip angles of 5° and 45°) and native-T1 and T2 maps were acquired in one mid-ventricular slice in 47 patients referred for CMR and 10 healthy controls. Afterwards, LGE images and post-contrast T1 maps were acquired and gadolinium partition coefficient (GPC) was calculated. Maps of ΔS/So were calculated as (S45-S5)/S5*100 (%), where Sflip_angle is the voxel signal intensity.
RESULTS: Twenty three patients demonstrated areas of myocardial hyper-enhancement with LGE. In enhanced regions, ΔS/So, native-T1, T2, and GPC were heightened (p < 0.05 vs. non-enhanced tissues). ΔS/So, native-T1, and T2 all demonstrated association with GPC, however the association was strongest for ΔS/So. Bland-Altman analysis revealed a slight bias towards larger volume of enhancement with ΔS/So compared to LGE, and similar transmurality. Subjective analysis with 2-blinded expert readers revealed agreement between ΔS/So and LGE of 73.4 %, with false positive detection of 16.7 % and false negative detection of 15.2 %.
CONCLUSIONS: Gadolinium free 2-point bSSFP identified tissue that enhances at LGE with strong association to GPC. Our results suggest that with further development, MT-weighted CMR could be used similar to LGE for diagnostic imaging.
Document Type
Article
Publication Date
10-29-2015
Digital Object Identifier (DOI)
http://dx.doi.org/10.1186/s12968-015-0194-1
Funding Information
This work was supported by the National Center for Advancing Translational Sciences at the National Institutes of Health through grant number UL1TR000117 (supporting R.C.). S.W.L. and M.H.V. are supported through KL2TR000116. M.H.V is also supported by the American Heart Association National Affiliate (Dallas, TX) through grant number 14CRP20380071.
Repository Citation
Stromp, Tori A.; Leung, Steve W.; Andres, Kristin N; Jing, Linyuan; Fornwalt, Brandon K.; Charnigo, Richard; Sorrell, Vincent L.; and Vandsburger, Moriel H., "Gadolinium Free Cardiovascular Magnetic Resonance with 2-Point Cine Balanced Steady State Free Precession" (2015). Saha Cardiovascular Research Center Faculty Publications. 24.
https://uknowledge.uky.edu/cvrc_facpub/24
Notes/Citation Information
Published in Journal of Cardiovascular Magnetic Resonance, v. 17, article 90, p. 1-11.
© 2015 Stromp et al.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.