Influence spread in multi-layer interdependent networks (M-IDN) has been studied in the last few years; however, prior works mostly focused on the spread that is initiated in a single layer of an M-IDN. In real world scenarios, influence spread can happen concurrently among many or all components making up the topology of an M-IDN. This paper investigates the effectiveness of different influence spread strategies in M-IDNs by providing a comprehensive analysis of the time evolution of influence propagation given different initial spreader strategies. For this study we consider a two-layer interdependent network and a general probabilistic threshold influence spread model to evaluate the evolution of influence spread over time. For a given coupling scenario, we tested multiple interdependent topologies, composed of layers A and B, against four cases of initial spreader selection: (1) random initial spreaders in A, (2) random initial spreaders in both A and B, (3) targeted initial spreaders using degree centrality in A, and (4) targeted initial spreaders using degree centrality in both A and B. Our results indicate that the effectiveness of influence spread highly depends on network topologies, the way they are coupled, and our knowledge of the network structure — thus an initial spread starting in only A can be as effective as initial spread starting in both A and B concurrently. Similarly, random initial spread in multiple layers of an interdependent system can be more severe than a comparable initial spread in a single layer. Our results can be easily extended to different types of event propagation in multi-layer interdependent networks such as information/misinformation propagation in online social networks, disease propagation in offline social networks, and failure/attack propagation in cyber-physical systems.

Document Type


Publication Date


Notes/Citation Information

Published in Applied Network Science, v. 4, article no. 40, p. 1-21.

© The Author(s). 2019

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Digital Object Identifier (DOI)


Related Content

We provide the source code used to run experiment simulations for the results of this work in a publicly accessible GitHub repository.