Author ORCID Identifier

https://orcid.org/0000-0001-8351-918X

Date Available

4-23-2019

Year of Publication

2019

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Engineering

Department/School/Program

Chemical and Materials Engineering

First Advisor

Dr. Daniel Pack

Abstract

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop non-viral delivery systems that perform mechanistically similarly to viral delivery but lack immunogenic factors. Though safer, existing agents lack the efficacy inherent in the natural design of viral vectors. Clinical relevance of non-viral vectors will therefore depend on the ability to engineer optimized systems for cellular delivery in physiological environments.

Progress in non-viral vector design for gene delivery requires a deep understanding of the various barriers associated with nucleic acid delivery, including cell surface interaction, internalization, endosomal escape, cytosolic transport, nuclear localization, unpackaging, etc. Further, it requires a knowledge of vector design properties (surface chemistry, charge, size, shape, etc.) and how these physical parameters affect interactions with the cellular environment. Of these interactions, charge is shown to govern how particles are internalized and subsequently processed, thereby affecting the intracellular fate and efficacy of delivery. Charge also affects the in-serum stability where negative zeta potential improves stability and circulation time. Therefore, it is important to understand the effects of polyplex charge and other parameters on the internalization and intracellular fate of polyplexes for gene therapy.

In chapter 2, studies are performed to delineate the effects of polyplex charge on the cellular internalization and intracellular processing of polymer-mediated gene delivery. Charge is shown to affect the endocytic pathway involved in internalization, and the caveolin-dependent and macropinocytosis pathways lead to higher gene delivery efficacy, likely due to avoidance of acidified compartments such as late endosomes and lysosomes. In chapters 3-4, novel nanoparticles carrying DNA, RNA, and antioxidants are assessed for therapeutic effect with an emphasis on studying the internalization mechanisms and resulting effect on efficacy. Novel RNA delivery agents are shown to benefit from EGFR-targeting aptamer and nanoceria/PEI hybrids are demonstrated to provide simultaneous antioxidant and gene therapy. Finally, chapter 5 demonstrates the use of silencing RNA and CRISPR/Cas9 genome editing to study the prevalence of gene targets in vivo.

The overall goal of this work is to contribute to the design and application of novel nanoparticles for gene delivery and offer insight into the engineering of novel polyplexes. It remains clear that route of internalization is key to successful gene delivery, and designing polyplexes to enter through non-acidified endocytic pathways is highly beneficial to transgene expression. This can be achieved through incorporation of surface chemistries that trigger internalization through targeted pathways and is the source of further work in the lab.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.121

Share

COinS