Author ORCID Identifier

https://orcid.org/0000-0003-1603-4566

Date Available

3-21-2021

Year of Publication

2019

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Engineering

Department/School/Program

Chemical and Materials Engineering

First Advisor

Dr. T. John Balk

Abstract

Scandate cathodes, where scandia is added to the tungsten cathode pellets, have recently received substantial and renewed research interest owing to significantly improved electron emission capabilities at lower temperatures, as compared with conventional dispenser cathodes. However, there are several persistent issues including non-uniform electron emission, lack of understanding regarding scandium’s role in the emission mechanism, and unreliable reproducibility in terms of scandate cathode fabrication. As a result, scandate cathodes have not yet been widely implemented in actual vacuum electron devices (VEDs).

The surface structure and chemical composition of multiple scandate cathodes – prepared with the powder using the liquid-solid (L-S) technique – and exhibiting excellent emission behavior were characterized to give insight into the fundamental mechanism(s) of operation. This was achieved with high-resolution electron microscopy techniques that include high-precision specimen lift-out. These studies showed that the micron-sized tungsten particles that compose the largest fraction of the cathode body are highly faceted and decorated with nanoscale Ba/BaO (~10 nm), as well as larger (~150 nm) Sc2O3 and BaAl2O4 particles. The experimentally identified facets were confirmed through Wulff analysis of the tungsten crystal shape and were determined to consist of {110}, {100}, and {112} facets, in increasing order of surface area prevalence. Furthermore, it is estimated that Ba atoms decorating the tungsten crystal surfaces are present in quantities such that monolayer coverage is possible at elevated temperatures.

The high-resolution electron microscopy techniques used to investigate the cross section (near-surface) of the L-S scandate cathodes also revealed that the BaAl2O4 particles (100-500 nm) that attach to the larger tungsten particles are either adjacent to the smaller Sc2O3 nanoparticles or encompass them. Furthermore, high-resolution chemical analysis and 3D elemental tomography show that the two oxides always appear to be physically distinct from each other, despite their close proximity. 3D elemental tomography also showed that the Sc2O3 particles can sometimes appear inside the larger tungsten particles, but are inhomogeneously distributed. Nanobeam electron diffraction confirmed that the crystal structure of the tungsten particles are body-centered cubic, and imply that the structure remains unchanged despite the numerous complex chemical reactions that take place throughout the impregnation and activation procedures.

The role of Sc and the emission mechanism for scandate cathodes are discussed. Based on characterization results and materials computation, the role of Sc in scandate cathodes is possibly related to tuning the partial pressure of oxygen in order to establish an oxygen-poor atmosphere around the cathode surface, which is a necessary condition for the formation of the (near) equilibrium tungsten shape. A thin Ba-Sc-O surface layer (~8 nm) was detected near the surface of tungsten particles, using electron energy loss spectroscopy in the scanning transmission electron microscope. This stands in stark contrast to models invoking a ~100 nm Ba-Sc-O semiconducting surface layer, which are broadly discussed in the literature. These results provide new insights into understanding the emission mechanism of scandate cathodes.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.034

Funding Information

This work was financially supported by the Defense Advanced Research Projects Agency (DARPA) Innovative Vacuum Electronics Science and Technology (INVEST) program, under grant number N66001-16-1-4041.

Share

COinS