Date Available

7-22-2014

Year of Publication

2014

Document Type

Doctoral Dissertation

Degree Name

Doctor of Philosophy (PhD)

College

Engineering

Department/School/Program

Chemical and Materials Engineering

Advisor

Dr. Dibakar Bhattacharyya

Co-Director of Graduate Studies

Dr. Bruce J. Hinds

Abstract

Automated and continuous processes are the future trends in downstream protein purification. A functionalized nanometer-scale membrane electrode system, mimicking the function of cell wall transporters, can selectively capture genetically modified proteins and subsequently pump them through the system under programmed voltage pulses. Numerical study of the two-step pulse pumping cycles coupled with experimental His-GFP releasing study reveals the optimal 14s/1s pumping/repel pulse pumping condition at 10 mM bulk imidazole concentration in the permeate side. A separation factor for GFP: BSA of 9.7 was achieved with observed GFP electrophoretic mobility of 3.1×10-6 cm2 s-1 V-1 at 10 mM bulk imidazole concentration and 14 s/1 s pumping/repel duration. The purification of His6-OleD Loki variant directly from crude E. coli extracts expression broth was demonstrated using the pulse pumping process, simplifying the separation process as well as reducing biopharmaceutical production costs. The enzymatic reactions showed that His6-OleD Loki was still active after purification.

A nanoporous membrane/electrode system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzymes-complex system was demonstrated. The substrates residence time on the immobilized enzyme can be precisely controlled by changing the pumping rate and thereby prevent a secondary hydrolysis reaction. Immobilized enzyme showed long term storage longevity with activity half-life of 50 days at 4℃ and the ability to be regenerated. One-step immobilization and purification of His-tagged OleD Loki variant directly from expression broth, yielded 98% Uridine Diphosphate glycosylation and 80% 4-methylumbelliferone glycosylation conversion efficiency for the sequential reaction.

A flow-through electroporation system, based on a novel membrane/electrode design, for the delivery of membrane-impermeant molecules into Model Leukocyte cells was demonstrated. The ability to apply low voltage between two short distance electrodes contributes to high cell viability. The flow-through system can be easily scaled-up by varying the micro-fluidic channel geometry and/or the applied voltage pulse frequency. More importantly, the system allows the electrophoretical pumping of molecules from the reservoir across the membrane/electrode system to the micro-fluidic channel for transfection, which reduces large amount of reagents used.

Share

COinS