Abstract
Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air–water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv–6.0 ppmv O3(g) with microdroplets containing [catechol] = 1–150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon–carbon bond at the air–water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.
Document Type
Article
Publication Date
11-25-2014
Digital Object Identifier (DOI)
http://dx.doi.org/10.1021/es504094x
Funding Information
The authors thank research funding from the National Aeronautics and Space Administration (NASA) (NNX10AV39A) and the National Science Foundation (NSF) CAREER Award (CHE-1255290).
Repository Citation
Pillar, Elizabeth A.; Camm, Robert C.; and Guzman, Marcelo I., "Catechol Oxidation by Ozone and Hydroxyl Radicals at the Air-Water Interface" (2014). Chemistry Faculty Publications. 38.
https://uknowledge.uky.edu/chemistry_facpub/38
Supporting Information
es-2014-04094x_0007.jpeg (140 kB)
Figure in abstract in high resolution
10.1021-es504094xFigure.ppt (215 kB)
Figure in abstract on PowerPoint
es-2014-04094x_0002.jpeg (136 kB)
Figure 1 in high resolution
10.1021-es504094xFigure1.ppt (212 kB)
Figure 1 on PowerPoint
es-2014-04094x_0005.jpeg (413 kB)
Scheme 1 in high resolution
10.1021-es504094xScheme1.ppt (490 kB)
Scheme 1 on PowerPoint
es-2014-04094x_0003.jpeg (69 kB)
Figure 2 in high resolution
10.1021-es504094xFigure2.ppt (145 kB)
Figure 2 on PowerPoint
es-2014-04094x_0004.jpeg (224 kB)
Figure 3 in high resolution
10.1021-es504094xFigure3.ppt (351 kB)
Figure 3 on PowerPoint
es-2014-04094x_0006.jpeg (386 kB)
Figure 4 in high resolution
10.1021-es504094xScheme2.ppt (463 kB)
Scheme 2 on PowerPoint
Included in
Analytical Chemistry Commons, Environmental Chemistry Commons, Environmental Engineering Commons, Organic Chemistry Commons, Other Environmental Sciences Commons, Physical Chemistry Commons
Notes/Citation Information
Published in Environmental Science & Technology, v. 48, no. 24, p. 14352-14360.
Copyright © 2014 American Chemical Society
ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.