Abstract

Understanding the acid–base behavior of carboxylic acids on aqueous interfaces is a fundamental issue in nature. Surface processes involving carboxylic acids such as acetic and pyruvic acids play roles in (1) the transport of nutrients through cell membranes, (2) the cycling of metabolites relevant to the origin of life, and (3) the photooxidative processing of biogenic and anthropogenic emissions in aerosols and atmospheric waters. Here, we report that 50% of gaseous acetic acid and pyruvic acid molecules transfer a proton to the surface of water at pH 2.8 and 1.8 units lower than their respective acidity constants pKa = 4.6 and 2.4 in bulk water. These findings provide key insights into the relative Bronsted acidities of common carboxylic acids versus interfacial water. In addition, the work estimates the reactive uptake coefficient of gaseous pyruvic acid by water to be γPA = 0.06. This work is useful to interpret the interfacial behavior of pyruvic acid under low water activity conditions, typically found in haze aerosols, clouds, and fog waters.

Document Type

Article

Publication Date

8-7-2018

Notes/Citation Information

Published in Langmuir, v. 34, no. 31, p. 9307-9313.

© 2018 American Chemical Society

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Digital Object Identifier (DOI)

https://doi.org/10.1021/acs.langmuir.8b01606

Funding Information

M.I.G. thanks research funding from the National Science foundation under NSF CAREER award CHE-1255290. A.J.E. acknowledges the support by the NASA Earth and Space Science Fellowship (NESSF) Program. A.J.C. acknowledges funding from the National Science Foundation under grant AGS-1744353.

Streaming Media

 
Media is loading
la8b01606_liveslides.mp4 (5515 kB)
Supporting information: MP4 video

Share

COinS