Author ORCID Identifier
Date Available
5-12-2017
Year of Publication
2017
Document Type
Doctoral Dissertation
Degree Name
Doctor of Philosophy (PhD)
College
Arts and Sciences
Department/School/Program
Chemistry
Advisor
Dr. John E. Anthony
Abstract
Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have likewise been investigated.
Functionalization of acene compounds by placement of groups around the molecule affects the way in which molecules interact in the solid state, in addition to the energetics of the molecule. The use of electron donating or electron withdrawing groups affects the frontier molecular orbitals and thus affects the optical and electronic gaps of the molecules. The use of bulky side groups such as alkylsilylethynyl groups allows for crystal engineering of molecular aggregates, and changing the volume and dimensions of the alkylsilyl groups affects the intermolecular interactions and thus changes the packing motif.
In chapter 2, a series of tetracene and pentacene molecules with strongly electron withdrawing groups is described. The investigation focuses on the change in energetics of the frontier molecular orbitals between the base acene and the nitrile and dicyanovinyl derivatives as well as the differences between the pentacene and tetracene molecules. The differences in close packing motifs through use of bulky alkylsilylethynyl groups is also discussed in relation to electron acceptor material design and bulk heterojunction organic photovoltaic characteristics.
Chapter 3 focuses on molecular acceptor and donor molecules for bulk heterojunction organic photovoltaics based on anthrathiophene and benzo[1,2-b:4,5-b’]dithiophene central units like literature molecules containing fluorene and dithieno[2,3-b:2’,3’-d]silole cores. The synthetic strategies of developing reduced symmetry benzo[1,2-b:4,5-b’]dithiophene to study the effect of substitution around the central unit is also described. The optical and electronic properties of the donors and acceptors are described along with the performance and characteristics of devices employing these molecules.
The final two data chapters focus on new nitrogen containing polycyclic hydrocarbons containing indolizine and (2.2.2) cyclazine units. The optical, electronic and other physical properties of these molecules are explored, in addition to the synthetic strategies for incorporating the indolizine and cyclazine units. By use of alkylsilylethynyl groups, crystal engineering was investigated for the benzo[2,3-b:5,6-b’]diindolizine chromophore described in chapter 4 to target the 2-D “brick-work” packing motif for application in field effect transistor devices. Optical and electronic properties of the cyclazine end-capped acene molecules described in chapter 5 were investigated and described in relation to the base acene molecules. In both cases, density functional theory calculations were conducted to better understand unexpected optical properties of these molecules, which are like the linear acene series despite the non-linear attachment.
Digital Object Identifier (DOI)
https://doi.org/10.13023/ETD.2017.202
Recommended Citation
Granger, Devin B., "ACENES, HETEROACENES AND ANALOGOUS MOLECULES FOR ORGANIC PHOTOVOLTAIC AND FIELD EFFECT TRANSISTOR APPLICATIONS" (2017). Theses and Dissertations--Chemistry. 76.
https://uknowledge.uky.edu/chemistry_etds/76
Included in
Materials Chemistry Commons, Organic Chemistry Commons, Semiconductor and Optical Materials Commons