Date Available
4-3-2012
Year of Publication
2011
Degree Name
Doctor of Philosophy (PhD)
Document Type
Doctoral Dissertation
College
Arts and Sciences
Department/School/Program
Chemistry
First Advisor
Dr. Sylvia Daunert
Abstract
The detection of small molecules in complex sample matrices such as environmental (surface and ground water, sediment, etc.) and biological (blood, serum, plasma, etc.) samples is of paramount importance for monitoring the distribution of environmental pollutants and their patterns of exposure within the population as well as diagnosing and managing diseases. Biosensors have demonstrated a singular ability to sensitively and selectively detect analytes in complex samples without the need for extensive sample preparation and pretreatment. Nature has demonstrated myriad examples of exquisite selectivity in spite of complexity and we seek to take advantage of that attribute in the development of novel biosensing systems.
In the work presented here, we have developed both cell- and proteinbased biosensing systems for the detection of hydroxylated polychlorinated biphenyls (OH-PCBs) and protein-based sensing systems for the detection of glucose. In the development of a whole-cell sensing system, the regulatory protein, HbpR, and its associated promoter was used to modulate the expression of luciferase. Additionally, the effector binding domain of HbpR, HbpR-A, was isolated and modified with a solvatochromic fluorophore resulting in a proteinbased sensing system. For the detection of glucose, two different glucose binding proteins were engineered in an effort to tailor their characteristics, such as binding affinity and thermal stability, to develop a rugged, sensitive proteinbased sensing system. We envision that these biosensing systems will find applications in the areas of environmental pollutant monitoring and the management and treatment of diseases such as diabetes.
Recommended Citation
Turner, Kendrick Bruce, "CELL AND PROTEIN-BASED SENSING SYSTEMS FOR THE DETECTION OF ENVIRONMENTALLY AND PHYSIOLOGICALLY RELEVANT MOLECULES" (2011). Theses and Dissertations--Chemistry. 1.
https://uknowledge.uky.edu/chemistry_etds/1