Date Available

1-28-2016

Year of Publication

2015

Document Type

Doctoral Dissertation

Degree Name

Doctor of Philosophy (PhD)

College

Engineering

Department/School/Program

Civil Engineering

Advisor

Dr. Douglas Bradley Davis

Co-Director of Graduate Studies

Dr. George E. Blandford

Abstract

Floors have traditionally been designed only for strength and deflection serviceability. As technological advances have been made in medical, scientific and micro-electronics manufacturing, many types of equipment have become sensitive to vibration of the supporting floor. Thus, vibration serviceability has become a routinely evaluated limit state for floors supporting sensitive equipment. Equipment vibration tolerance limits are sometimes expressed as waveform peak acceleration, and are more often expressed as narrowband spectral acceleration, or one-third octave spectral velocity.

Current floor vibration prediction methods, such as those found in the American Institute of Steel Construction Design Guide 11, Floor Vibrations Due to Human Activity, the British Steel Construction Institute P354, Design of Floors for Vibration: a New Approach and the British Concrete Centre CCIP-016 A Design Guide for Footfall Induced Vibration of Structures, have limitations. It has been observed that non-structural components such as light-weight partitions could significantly change floor dynamic properties. Current prediction methods do not provide a fundamental frequency manual prediction method nor finite element modeling guidance for floors with non-structural components. Current prediction methods only predict waveform peak acceleration and do not provide predictions for frequency domain response including narrowband spectral acceleration or one-third octave spectral velocity. Also, current methods are not calibrated to provide a specific level of conservatism.

This research project provides (1) a fundamental frequency manual prediction method for floors with lightweight partitions; (2) an improved finite element modeling procedure for floors with light-weight partitions; (3) a procedure to predict the vibration response in narrow-band spectrum and one-third octave band spectrum which can be directly compared with vibration tolerance limits; and (4) a simplified experimental procedure to estimate the floor natural frequencies.

An experimental program including four steel-framed building floors and a concrete was completed. Modal tests were performed on two of the steel-framed buildings and the concrete building using an electrodynamic shaker. Experimental modal analysis techniques were used to estimate the modal properties: natural frequencies, mode shapes, and damping ratios. Responses to walking excitation were measured several times in each tested bay for individuals walking at different walking speeds. During each test, the walker crossed the middle of the bay using a metronome to help maintain the intended cadence.

The proposed method was used to predict the modal properties and responses to walking. The measurements are used to assess the precision of the proposed methods and to calibrate the prediction methods to provide a specific probability that the actual response will exceed the predicted response. Comparison of measurements and predictions shows the proposed methods are sufficiently accurate for design usage.

Digital Object Identifier (DOI)

http://dx.doi.org/10.13023/ETD.2016.013

Share

COinS