Start Date
10-17-2017 10:00 AM
Description
Metalloproteins play crucial biochemical roles in our body and are essential across all domains of life. The structural environment around a metal ion, especially the coordination geometry (CG), is both sequentially and functionally relevant. Studies of the metalloprotein’s CG will greatly help alleviate the imbalance between the ample sequence data available and the insufficient knowledge on protein functions. Current methodologies in characterizing metalloproteins’ CG consider only previously reported CG (canonical CG) models based primarily on nonbiological chemical context. Exceptions to these canonical CG models can greatly hamper the ability to characterize metalloproteins both structurally and functionally.
Included in
Biochemistry, Biophysics, and Structural Biology Commons, Bioinformatics Commons, Computer Sciences Commons
Aberrant Coordination Geometries Discovered in Most Abundant Metalloproteins
Metalloproteins play crucial biochemical roles in our body and are essential across all domains of life. The structural environment around a metal ion, especially the coordination geometry (CG), is both sequentially and functionally relevant. Studies of the metalloprotein’s CG will greatly help alleviate the imbalance between the ample sequence data available and the insufficient knowledge on protein functions. Current methodologies in characterizing metalloproteins’ CG consider only previously reported CG (canonical CG) models based primarily on nonbiological chemical context. Exceptions to these canonical CG models can greatly hamper the ability to characterize metalloproteins both structurally and functionally.