The goal of the study was to develop a novel, rapid Calibrated Short TR Recovery (CaSTRR) method to measure the brain-blood partition coefficient (BBPC) in mice. The BBPC is necessary for quantifying cerebral blood flow (CBF) using tracer-based techniques like arterial spin labeling (ASL), but previous techniques required prohibitively long acquisition times so a constant BBPC equal to 0.9 mL/g is typically used regardless of studied species, condition, or disease. An accelerated method of BBPC correction could improve regional specificity in CBF maps particularly in white matter. Male C57Bl/6N mice (n = 8) were scanned at 7T using CaSTRR to measure BBPC determine regional variability. This technique employs phase-spoiled gradient echo acquisitions with varying repetition times (TRs) to estimate proton density in the brain and a blood sample. Proton density weighted images are then calibrated to a series of phantoms with known concentrations of deuterium to determine BBPC. Pseudo-continuous ASL was also acquired to quantify CBF with and without empirical BBPC correction. Using the CaSTRR technique we demonstrate that, in mice, white matter has a significantly lower BBPC (BBPCwhite = 0.93 ± 0.05 mL/g) than cortical gray matter (BBPCgray = 0.99 ± 0.04 mL/g, p = 0.03), and that when voxel-wise BBPC correction is performed on CBF maps the observed difference in perfusion between gray and white matter is improved by as much as 14%. Our results suggest that BBPC correction is feasible and could be particularly important in future studies of perfusion in white matter pathologies.

Document Type


Publication Date


Notes/Citation Information

Published in Frontiers in Neuroscience, v. 13, article 308, p. 1-7.

Copyright © 2019 Thalman, Powell and Lin.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)


Funding Information

This research was supported by the National Institute of Health (NIH) (Grant Nos. K01AG040164, R01AG054459, and T32AG057461). The 7T ClinScan small animal MRI scanner of the University of Kentucky was funded by the S10 NIH Shared Instrumentation Program (Grant No. 1S10RR029541-01).